Groups acting by conjugation

Recall that a group G acts on itself by conjugation as follows:

$$
g \cdot a=g a g^{-1} \quad \forall g, a \in G .
$$

This satisfies the axioms for a group action:

$$
\begin{aligned}
& \left|\cdot a=|a|^{-1}=a,\right. \text { and } \\
& (g h) \cdot a=(g h) a(g h)^{-1}=g h a h^{-1} g^{-1}=g \cdot(h \cdot a) .
\end{aligned}
$$

Def: Elements $a, b \in G$ are conjugate if $\rightarrow g$ sit. $b=g a g^{-1}$, i.e. if they are in the sememe orbit under the conjugation action. The orbits in this case are called the conjugacyclasses of G.

Ex: If $a \in Z(G)$, then a is the only element in its conjugacy class. If $a \notin Z(G)$, then there is some g sit. $g a g^{-1} \neq a$, so there are at least two elements in its conjucacy class.

Note: If G is nontrivial, the action of conjugation cant be transitive, since the conjugacy class of 1 is always just $\{1\}$.

Recall that if G acts on A, and $a \in A$, we showed that the number of ells in its orbit will be equal to $\left|G: G_{a}\right|$, ie. the index of its stabilizer in G.

When G acts on itself by conjugation, and $h \in G$,

$$
G_{h}=\left\{g \in G \mid g h g^{-1}=h\right\}=C_{G}(s) .
$$

That is,

Prop: The number of conjugates of an element $s \in G$. is $\left|G: C_{G}(s)\right|$.

We know that the orbits of an action partition the set being acted on, so in particular, if we add up the $\#$ of elements in all the orbits, we get the following:

Thu: (The Class equation) Let G be a finite group, and $g_{1}, g_{2}, \ldots, g_{r}$ representatives of the distinct conjugacy classes not contained in the center of G. Then

$$
|G|=|z(G)|+\sum_{i=1}^{r}\left|G: C_{G}\left(g_{i}\right)\right|
$$

Pf: Each orbit in the center has exactly one element. If the other orbits are K_{1}, \ldots, K_{r} and g_{i} a representative from K_{i}, then $\left|k_{i}\right|=\left|G: C_{G}\left(g_{i}\right)\right|$.

Since the orbits partition G, summing up their cardinalities gives us the desired equation.

Ex: In D_{8}, the center is $\left\{1, r^{2}\right\}$.

The centralizer of r contains $\langle r\rangle$, so it has order ≥ 4. Thus, $\left|G_{G}: C_{G}(r)\right| \leqslant \frac{8}{4}=2$. But $S r s=r^{3}$, so its conjugacy class is $\left\{r, r^{3}\right\}$.
$C_{G}(s)=\left\{1, s, r^{2}, s r^{2}\right\}$, so $\left|G_{G}: C_{G}(s)\right|=2$, and $r s r^{-1}=s r^{2}$, so its conj. class is $\left\{s, s r^{2}\right\}$.

Note that the two remaining els are conjugate: $r(s r) r^{-1}=s r^{3}$, so $\left\{s r, s r^{3}\right\}$ is the final conjugacy class.

Note that all of the summands in the class group divide the order of the group. This helps us classify some finite groups.

Theorem: If p is prime, and G is a group of order p^{α}, some $\alpha \geq 1$, then G has nontrivial center.

Pf: Let g_{1}, \ldots, g_{2} be representatives from the conjugacy classes not contained in the center (if there are any).

Then for each g_{i}, its conjugacy class has at least 2 elements, so $1<\left|G: C_{G}\left(g_{i}\right)\right|$, and Lagrange's Thu says that the index must divide p^{α}. Thus, for each $g_{i}, p| | c_{i}: C_{G}\left(g_{i}\right) \mid$.

The class equation says that

$$
\begin{array}{r}
P^{\alpha}=|Z(G)|+\sum_{i=1}^{上}\left|G: C_{G}\left(g_{i}\right)\right| \\
\text { divisible by } P
\end{array}
$$

Thus $p||Z(g)|$, so $Z(G)$ is not trivial. D

Cor: If $|G|=p^{2}$ for some prime p, then G is abelian, and G is cyclic or $G \cong Z_{p} \times Z_{p}$.

Pf: $|Z(G)|=p$ or p^{2} by the above. Thus $|G / Z(G)|=1$ or p, so it's cyclic. Thus, by a HW problem, G is abelian.

The nontrivial elements of G have orders p or p^{2}. If G has any element of order p^{2}, then G is cyclic. Thus, assume all nontrivial elements have order p.

Let $x \in G$ sit. $x \neq 1$. Then $|x|=p$, so we can find $y \in G-\langle x\rangle$.

Then $\langle x\rangle \times\langle y\rangle \cong Z_{p} \times Z_{p}$. Define $\varphi:\langle x\rangle \times\langle y\rangle \rightarrow G$ by $\left(x^{a}, y^{b}\right) \longmapsto x^{a} y^{b}$. It is straightforward to check this is a homomorphism.

If $\left(x^{a}, y^{b}\right) \in \operatorname{ker} \varphi$, then $x^{a} y^{b}=1 \Rightarrow x^{a}=y^{-b} \in\langle x\rangle \cap\langle y\rangle$. But $\langle x\rangle \cap\langle y\rangle \nless\langle x\rangle$, and the order divides p, so $a=b=0$.

Thus, $\operatorname{ker} \varphi=1$, so φ is injective. Both groups have the same order, so it must also be a bijection and thus an isomorphism.

