Groups acting by conjugation

Recall that a group G acts on itself by conjugation as follows: $g \cdot a = g a g^{-1} \quad \forall g, a \in G.$

This satisfies the axions for a group action: $|\cdot a = |a|^{-1} = a$, and $(gh) \cdot a = (gh) \cdot a (gh)^{-1} = ghah^{-1}g^{-1} = g \cdot (h \cdot a)$.

Def: Elements a, b & G are <u>conjugate</u> if $\exists g s.t. b = g a g^{-1}$, i.e. if they are in the same orbit under the conjugation action. The orbits in this case are called the <u>conjugacy classes</u> of G.

 \overline{EX} : If $a \in \overline{Z}(G)$, then a is the only element in its conjugacy class. If $a \notin \overline{Z}(G)$, then there is some g s.t. $gag^{-1} \neq a$, so there are at least two elements in its conjucacy class.

Note: If G is nontrivial, the action of conjugation can't be transitive, since The conjugacy class of lise always just {13.

Recall that if G acts on A, and a eA, we showed that the number of elts in its orbit will be equal to $[G:G_a]$, i.e. the index of its stabilizer in G.

When G acts on itself by conjugation, and
$$h \in G$$
,
 $G_h = \{g \in G \mid ghg^{-1} = h\} = C_G(S)$.
That is,

Prop: The number of conjugates of an element seG.
is
$$|G:(G(s))|$$
.

We know that the orbits of an action partition the set being acted on, so in particular, if we add up the # of elements in all the orbits, we get the following:

Thm: (The Class equation) Let G be a finite group, and gisg2,...,gr representatives of the distinct conjugacy classes not contained in the center of G. Then

$$|G| = |Z(G)| + \sum_{i=1}^{L} |G:C_{G}(g_{i})|$$

<u>Pf</u>: Each orbit in the center has exactly one element. If the other orbits are $K_1, ..., K_r$ and g_i a representative from K_i , then $|k_i| = |G : C_G(g_i)|$.

since the orbits partition G, summing up their cardinalities gives us the desired equation.

Ex: In Dr, the center is El, r2].

The centralizer of r contains (r), so it has order ≥ 4 . Thus, $|G: C_{q}(r)| \le \frac{8}{4} = 2$. But $Srs = r^{3}$, so its conjugacy class is $\{r, r^{3}\}$.

$$C_{G}(s) = \{1, s, r^{2}, sr^{2}\}$$
, so $|G: C_{G}(s)| = 2$, and $rsr^{-1} = sr^{2}$,
so its conj. class is $\{s, sr^{2}\}$.

Note that the two remaining elts are conjugate: r(sr)r⁻¹=sr³, so {sr, sr³} is the final conjugacy class.

Note that all of the summands in the class group divide the order of the group. This helps us classify some finite groups.

Theorem: If p is prime, and G is a group of order p^{α} , some $\alpha \ge 1$, then G has nontrivial center.

<u>Pf</u>: let g₁,...,g₁ be representatives from the conjugacy classes not contained in the center (if there are any).

Then for each g_i , its conjugacy class has at least 2 elements, so $| < | G : C_a(g_i) |$, and Lagrange's Then says that The index must divide p^{α} . Thus, for each g_i , $p | | G : C_a(g_i) |$.

-

The class equation says that

$$p^{\alpha} = \left| \overline{\mathcal{Z}}(G_{1}) \right| + \sum_{i=1}^{r} \left| G^{i} C_{G}(g_{i}) \right|$$

$$f$$

$$divisible by p$$

Cor: If
$$|G| = p^2$$
 for some prime p. then G is abelian, and
G is cyclic or $G \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Pf: $|Z(G)| = p \text{ or } p^2$ by the above. Thus $|G_{Z(G)}| = | \text{ or } p$, so it's cyclic. Thus, by a HW problem, G is abelian.

The hontrivial elements of G have orders p or p^2 . If G has any element of order p^2 , Then G is cyclic. Thus, assume all nontrivial elements have order p.

Then $\langle x \rangle \times \langle y \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Define $\Psi : \langle x \rangle \times \langle y \rangle \longrightarrow G$ by $(x^{\alpha}, y^{b}) \longmapsto x^{\alpha}y^{b}$. It is straightforward to check this is a homomorphism.

If
$$(x^{a}, y^{b}) \in \ker \mathcal{U}$$
, then $x^{a}y^{b} = l \Rightarrow x^{a} = y^{-b} \in \langle x \rangle \land \langle y \rangle$. But
 $\langle x \rangle \land \langle y \rangle \neq \langle x \rangle$, and the order divides p , so $a = b = D$.

Thus, ker 4 = 1, so 4 is injective. Both groups have the same order, so it must also be a bijection and thus an isomorphism. []